The saving rate in Japan: Why it has fallen and why it will remain low

R. Anton Braun *
University of Tokyo

Daisuke Ikeda †
Northwestern University and Bank of Japan

Douglas H. Joines‡
University of Southern California

December 5, 2007

Abstract

During the 1990s, Japan began experiencing demographic changes that are larger and more rapid than in other OECD countries. These demographic changes will become even more pronounced in future years. We are interested in understanding the role of lower fertility rates and aging for the evolution of Japan’s saving rate. We use a computable general equilibrium model to analyze the response of the national saving rate to changes in demographics and total factor productivity. In our model aging accounts for 2 to 3 percentage points.

*Corresponding author: Faculty of Economics, University of Tokyo, email: toni@e.u-tokyo.ac.jp. Braun acknowledges support from the Japanese Ministry of Education, Culture, Sports, Science and Technology and the Kikawaka Foundation.
†The views expressed in this paper are those of the author and are not those of the Bank of Japan.
‡Joines acknowledges financial support from the Japan Foundation and the Social Science Research Council under an Abe Fellowship.
of the 9 percent decline in the Japanese national saving rate between 1990 and 2000 and persistently depresses Japan’s national saving rate in future years.

1 Introduction

Between 1961 and 1990 the national saving rate in Japan averaged over 16 percent of output. It exceeded 10 percent in all years except 1983 and as recently as 1990 was 15 percent. For purposes of comparison, the United States saving rate in 1990 was 9 percentage points lower, or about 6 percent. Since 1990, however, Japan’s saving rate has experienced a sharp decline. By 2000 it had fallen to 5.7 percent. Associated with this decline in the Japanese saving rate has been a concurrent decline in the after-tax real return on capital, or after-tax real interest rate, from 6 percent in 1990 to 4 percent in 2000, and low economic growth.

Is this sharp decline in Japan’s national saving rate a temporary aberration from its historical average of 16 percent or is the national saving rate likely to remain low in future years? We find that this decline is highly persistent and that the Japanese saving rate will average less than 5 percent in future years even if there is a robust recovery in TFP growth.

This finding is based on modeling two principal determinants of the national saving rate. Hayashi and Prescott (2002) and Chen, İmrohoroglu, and İmrohoroglu (2006a) emphasize the important role of total factor productivity (TFP) growth in understanding investment and saving patterns in Japan. We also find that TFP growth is an important determinant of variation in observed Japanese saving rates since 1961. In addition, it is an important factor, although not the dominant one, in accounting for the long-run decline in saving predicted by our model.

The second major factor underlying our prediction of persistently low Japanese saving rates is demographics. Japan is now experiencing demo-

---

1 The national saving rate is defined as net national saving divided by net national product. Our data source for Japan is Hayashi and Prescott (2002) and for the United States it is the Department of Commerce, Bureau of Economic Analysis.

2 Our measure of the after-tax real interest rate is the after-tax real return on capital and is taken from Hayashi and Prescott (2002).
graphic changes that are large by both historical and international standards. According to government projections, the level of the Japanese population will decline from 127.7 million to 100.6 million between 2006 and 2050. Other countries are experiencing demographic change, but Japan is particularly interesting because the changes have been larger and more sudden than elsewhere. In 1980 only 9.1 percent of the Japanese population was aged 65 and above, a lower percentage than in all but one (Turkey) of the 23 other OECD member countries. By 1990, this figure had increased to 12.1 percent, but Japan was still the youngest of the G6 group of large, developed countries. By 2005, though, fully 19.9 percent of the Japanese population was aged 65 and above, the highest proportion in the OECD. This figure is projected to increase further to 36 percent by 2050.

We investigate the role of TFP growth and demographics for the future course of the national saving rate using a computational general equilibrium model as in Auerbach and Kotlikoff (1987). Our model maintains the life-cycle hypothesis of Modigliani and Brumberg (1954), a choice motivated by recent findings of Hayashi (1995) and Horioka, et al. (2000). Hayashi (1995) estimates Engel curves for Japanese households and finds that they are inconsistent with the hypothesis that bequest motives are important. Horioka, et al. (2000) argue, more generally, that survey evidence of Japanese households is much more consistent with the life-cycle hypothesis than the alternatives of altruistic or dynastic households. In a model populated by overlapping generations (OLG) of life-cycle consumers, demographic changes such as the aging of a baby boom generation, lower fertility, and increased longevity can cause significant changes in the national saving rate. In our model, households are formed when individuals reach age 21 and become economically active. Households have one adult and a varying number of children who consume a fixed fraction of the adult’s consumption. The number of children varies with the age of the adult and over time. Households may survive until a maximum age of 100 and are assumed to interact in perfectly competitive markets in a closed economy.\(^3\)

\(^3\)Japan is one of the largest economies in the world both in terms of aggregate and per capita GDP. Japan also has the smallest trade-to-GDP ratios for both goods and services in the OECD. For instance, in 2001 the trade-to-GDP ratio for goods was 9.3% in the
We consider three distinct sources of variation in saving rates and real interest rates: changes in fertility rates, changes in survival rates, and changes in the growth rate of TFP. The interaction of fertility rates and survival rates jointly determines the age distribution of the population at any point in time. By varying fertility rates and survival rates, we capture the effects of the Japanese baby boom, the ensuing permanent decline in fertility and the permanent increase in longevity on the age distribution and thus on aggregate saving and other macroeconomic variables. For example, the baby boom acts to increase the national saving rate in years when the baby boomers are of working age and then to reduce saving as they retire. A permanent decline in fertility or mortality rates reduces the fraction of workers (savers) in the population and increases the fraction of the elderly (dis-savers). These demographic changes can also affect saving behavior at each age at given factor prices. For example, lower fertility implies that fewer children are present in households during working years. This acts to reduce consumption and increase asset accumulation before retirement, and then to reduce saving at older ages as these assets are consumed. Given the retirement age, lower mortality rates (and thus a longer life expectancy) tend to increase asset holdings throughout the life cycle. In a closed economy, all of these changes affect factor prices, to which consumption (and labor supply) also respond.

The overall response of the national saving rate depends on the model parameterization. In an OLG model calibrated to Spanish data, Rios-

United States and 8.4% in Japan and the ratio of services to GDP was 2.4% and 2.3% respectively. For these reasons we think it reasonable to assume that real interest rates are determined in the domestic market in Japan.

In explaining the historical behavior of Japanese saving and interest rates, we also permit time variation in the depreciation rate and various indicators of fiscal policy, including government purchases, tax rates, the public debt, and the size of the public pension system.

Demographics also affect the saving rate via the same mechanisms that operate in a one-sector neoclassical growth model populated by infinitely-lived agents with log utility over consumption. In that model, lower fertility results in capital deepening, which may either increase or decrease the national saving rate. Along the balanced growth path the marginal product of capital is increasing in the population growth rate. However, net investment depends on the capital-output ratio and may either increase or decrease with the population growth rate depending on the capital share parameter and the rate of depreciation on investment.
Rull (2001) finds that a permanent aging of the population lowers the saving rate. Aging makes labor scarce relative to capital and this lowers the real interest rate and the national saving rate. Henrikson (2005) considers a two country model with trade and finds that aging in Japan will erase Japan’s trade surplus with the United States in future years.

Changes in the growth rate of productivity can also have large effects on the national saving rate. Hayashi and Prescott (2002), for instance, have found that the productivity slowdown in the 1990s produces big declines in private investment in a representative-agent, real-business-cycle model. Chen, İmrohoroglu, and İmrohoroglu (2005, 2006a, 2006b) find that changes in TFP growth alone can explain much of the variation in the Japanese saving rate over the last four decades of the twentieth century.\(^6\)

Before using the model to analyze the persistence of the recent decline in Japanese saving, we first assess its ability to reproduce movements in historical data. We calibrate the model to Japanese data and conduct a perfect foresight dynamic simulation analysis starting from 1961. This solution technique requires that the entire trajectory of demographic variables and TFP be specified. Our baseline specification uses historical Japanese data for the demographic variables and TFP for the period up to 2000. For future years we use the Japanese government’s intermediate population projections and assume that annual TFP growth recovers to 2 percent between 2000 and 2010.

Our model is reasonably successful in reproducing the observed year-to-year pattern of Japanese saving rates in the 1970s, 1980s and 1990s. The Japanese national saving rate was 22 percent in 1961, 24 percent in 1970, 25 percent in 1980, 26 percent in 1990, and 23 percent in 2000. The model reproduces these levels and captures the historical peak in 1975 when the saving rate rose to 30 percent.\(^5\)

\(^6\)Changes in unemployment risk can also affect saving and interest rates. Unemployment rates in Japan rose from 2.2 percent in 1990 to 5.5 percent in 2003. Moreover, between 1990 and 2000 the median duration spell of unemployment rose from 3.5 months to 5.5 months and the replacement rate fell from 0.84 to 0.68. If this risk is largely uninsurable then households will respond to it by increasing their demand for savings. The general equilibrium effects described in Aiyagari (1994) then imply that the real interest rate will also fall. Braun et al. (2005) simulated steady-state versions of our model incorporating unemployment risk and found that the measured increase in unemployment risk during the 1990s had a much smaller impact on saving and interest rates than either TFP or fertility rates. The effects of TFP and fertility on the saving rate were about equal in size.

We then examine the persistence of the decline in Japanese saving by documenting the model’s projections. In the baseline model the national saving rate does not exceed 3.3 percent through the end of the twenty-first century. The aging of Japan’s baby-boom generation and lower birth rates play an important role in these projections. If instead the demographic variables are held fixed at their values from the 1980s, the saving rate rises to nearly 8 percent by 2045.

We check the robustness of these projections by varying the conditioning assumptions for the demographic variables, TFP, government debt and risk aversion. In all cases, the saving rate remains at or below 5 percent through the year 2093. On the basis of these results we conclude that the Japanese saving rate will remain low through the end of the twenty-first century.

Our work is related to research by Hayashi, Ito, and Slemrod (1988), who investigate the role of imperfections in the Japanese housing market in accounting for the Japanese saving rate in an overlapping generations endowment economy. They find that the combination of rapid economic growth, demographics, and housing market imperfections explains the level of Japanese saving rates in 1980. Their projections, which condition on an unchanged real interest rate, show declines in the saving rate of about 10 percent between 2000 and 2030.

Our work is also closely related to but distinct from that of Chen, İmrohoroğlu, and İmrohoroğlu (2005, 2006b). They find that convergence from a low initial capital stock in conjunction with changes in TFP growth can explain most of the variation in the Japanese saving rate in historical data prior to 2000.

These projections are long-run trend values of the saving and interest rates. They are based on the assumption that fertility and mortality rates, the TFP growth rate, and fiscal policy variables evolve smoothly over time. As with any projection, high-frequency shocks to any of these variables would produce additional fluctuations in saving and interest rates. In addition, shocks to variables not present in our model, e.g., monetary policy, could also induce high-frequency variation in these variables.
They employ an overlapping generations model but assume that labor supply is exogenous and that the family scale is fixed over the life cycle.\footnote{Chen, Imrohoroglu, and Imrohoroglu (2006a) consider an infinite horizon representative agent model with a labor supply decision.} Our model incorporates an endogenous labor supply decision and allows family scale to vary with age and over time in a way that is consistent with the fraction of the Japanese population under 21 years of age. Both of these generalizations have implications for household saving decisions. Modeling variations in family scale also turns out to play an important role in reproducing the secular decline in Japanese hours worked.

Our objective is to assess the roles of TFP and demographics in future years. We find that variation in TFP growth plays an important role in our model’s projections prior to 2020. Over longer horizons, however, demographic factors are much more important and account for the majority of the decline in the national saving rate from its 1990 level.

The remainder of the paper is divided into five sections. In section 2 we describe the model economy, while section 3 reports its calibration. Section 4 evaluates the model’s ability to explain the observed behavior of saving and interest rates since 1961 and section 5 reports our projections. Section 6 contains our conclusions.

2 Model

2.1 Demographic Structure

This economy evolves in discrete time. We will index time by $t$ where $t \in \{-2, -1, 0, +1, +2, \ldots \}$. Households can live at most $J$ periods and $J$ cohorts of households are alive in any period $t$. They experience mortality risk in each period of their lifetime.

Let $N_{j,t}$ denote the number of households of age $j$ in period $t$. Then the
dynamics of population are governed by the first-order Markov process:

\[ \mathbf{N}_{t+1} = \begin{bmatrix} (1 + n_{1,t}) & 0 & 0 & \ldots & 0 \\ \psi_{1,t} & 0 & 0 & \ldots & 0 \\ 0 & \psi_{2,t} & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & \psi_{J-1,t} \end{bmatrix} \mathbf{N}_t \equiv \Gamma_t \mathbf{N}_t, \quad (1) \]

where \( \mathbf{N}_t \) is a \( J \times 1 \) vector that describes the population of each cohort in period \( t \), \( \psi_{j,t} \) is the conditional probability that a household of age \( j \) in period \( t \) survives to period \( t+1 \) and \( \psi_{J,t} \) is implicitly assumed to be zero. The growth rate of the number of age-1 households between periods \( t \) and \( t+1 \) is \( n_{1,t} \), which we will henceforth refer to as the net fertility rate.\(^9\) The aggregate population in period \( t \), denoted by \( N_t \), is given by

\[ N_t = \sum_{j=1}^{J} N_{j,t}. \quad (2) \]

The population growth rate is then given by \( n_t = N_{t+1}/N_t \). The unconditional probability of surviving from birth in period \( t - j + 1 \) to age \( j > 1 \) in period \( t \) is:

\[ \pi_{j,t} = \psi_{j-1,t-1} \pi_{j-1,t-1} \quad (3) \]

where \( \pi_{1,t} = 1 \) for all \( t \).

### 2.2 Firm’s Problem

Firms combine capital and labor using a Cobb-Douglas constant returns to scale production function

\[ Y_t = A_t K_t^\alpha H_t^{1-\alpha}, \quad (4) \]

\(^9\)Note that this usage differs from other common definitions of the fertility rate and that the net fertility rate, as we have defined it, can be negative, indicating a decline in the size of the youngest cohort from one period to the next. We compute quantities analogous to \( n_{1,t} \) from Japanese data and use these values to parameterize our model. We use our definition of the fertility rate to describe both the model quantities and their empirical counterparts.
where $Y_t$ is the output which can be used either for consumption or investment, $K_t$ is the capital stock, $H_t$ is effective aggregate labor input and $A_t$ is total factor productivity. Total factor productivity grows at the rate $\gamma_t = A_{t+1}^{1/(1-\alpha)}/A_t^{1/(1-\alpha)}$. We will assume that the market for goods and the markets for the two factor inputs are competitive. Then labor and capital inputs are chosen according to

$$r_t = \alpha A_t K_t^{\alpha-1} H_t^{1-\alpha},$$  \hspace{1cm} (5)$$

$$w_t = (1-\alpha) A_t K_t^\alpha H_t^{-\alpha},$$  \hspace{1cm} (6)$$

where $r_t$ is the rental rate on capital and $w_t$ is the wage rate per effective unit of labor. The aggregate capital stock is assumed to follow a geometric law of motion

$$K_{t+1} = (1-\delta_t)K_t + I_t,$$  \hspace{1cm} (7)

where, $I_t$, denotes aggregate investment and $\delta_t$ is the depreciation rate which is assumed to vary over time.

### 2.3 Household’s Problem

All households have one adult and a varying number of children. The number of children varies with the age of the adult and also over time. The utility function for a household born (and thus of age 1) in period $s$ is given by

$$U_s = \sum_{j=1}^{J} \beta^{j-1} \pi_{j,t} u(c_{j,t}, \ell_{j,t}; \eta_{j,t}),$$  \hspace{1cm} (8)$$

where $\beta$ is the preference discount rate, $c_{j,t}$ is total household consumption for a household of age $j$ in period $t = s+j-1$ and $\eta_{j,t}$ is the scale of a family of age $j$ in period $t$.

---

10As described below, labor efficiency is assumed to vary with age, so that changes in the age distribution of the population alter the average efficiency of the labor force. This effect is measured by $H_t$, while changes in efficiency due to technical progress are captured by $A_t$.

11We thank a referee for suggesting that we model time-variation in the family scale.
Households are born with zero assets but may borrow against their future income. Labor supply of a household of age \( j \) in period \( t \) is \( 1 - \ell_{j,t} \). Labor income is determined by an efficiency-weighted wage rate \( w_t \varepsilon_j \) per unit of labor supplied, where \( w_t \) denotes the market wage rate per unit of effective labor in period \( t \) and \( \varepsilon_j \) denotes the time-invariant efficiency of an age-\( j \) worker. The efficiency index \( \varepsilon_j \) is assumed to drop to zero for all \( j \geq J_r \), where \( J_r \) is the retirement age. The budget constraint for a household of age \( j \) in period \( t \) is:

\[
c_{j,t} + a_{j,t} \leq R_t a_{j-1,t-1} + w_t \varepsilon_j (1 - \ell_{j,t}) + b_{j,t} + \xi_t - \theta_{j,t}
\]  

where \( a_{j,t} \) denotes assets held at the end of period \( t \) (with \( a_{0,t} = 0 \) for all \( t \)), \( \theta_{j,t} \) are taxes imposed by the government, \( b_{j,t} \) denotes public pension (social security) benefits, and \( \xi_t \) is a uniform, lump-sum government transfer to all individuals alive in period \( t \), and \( R_t = 1 + r_t - \delta_t \). Here, \( \delta_t \) denotes the depreciation rate of capital in period \( t \). The pension benefit \( b_{j,t} \) is assumed to be zero before age \( J_r \) and a lump-sum payment thereafter.

Taxes imposed by the government are given by

\[
\theta_{j,t} = \tau^a_t (R_t - 1) a_{j-1,t-1} + \tau^\ell_t w_t \varepsilon_j (1 - \ell_{j,t})
\]

where \( \tau^a \) and \( \tau^\ell \) are the tax rates on income from capital and labor, respectively.

2.4 Household’s Decision Rules

We summarize the individual situation of an age-\( j \) household in period \( t \) with the state variable \( x_{j,t} \). The individual state consists solely of asset holdings \( a_{j-1,t-1} : x_{j,t} = \{a_{j-1,t-1}\} \). The aggregate state of the economy, denoted \( X_t \), is composed of total factor productivity, \( A_t \), the depreciation rate, \( \delta_t \), the family scale, \( \eta_t = \{\eta_{1,t}, \eta_{2,t}, \ldots, \eta_{J,t}\} \), government policy, \( \Psi_t \), the period \( t \) age-asset profile \( x_t = \{x_{1,t}, x_{2,t}, \ldots, x_{J,t}\} \), and the population distribution, \( N_t \) or \( X_t \equiv \{A_t, \delta_t, \eta_t, \Psi_t, x_t, N_t\} \).\(^{12}\) Households are assumed to know the entire path of \( X_t \) except \( x_t \) when they solve their problems. With these various

\(^{12}\)The elements of \( \Psi_t \) are defined in Section 2.5 below.
definitions and assumptions in hand, we can now state Bellman’s equation for a typical age-$j$ household in period $t = s + j - 1$:

$$V_j(x_{j,t}; X_t) = \max \left\{ u(c_{j,t}, \ell_{j,t}; \eta_{j,t}) + \beta \psi_{j+1} V_{j+1}(x_{j+1,t+1}; X_{t+1}) \right\}$$

subject to

$$c_{j,t} + a_{j,t} \leq R(X_t) a_{j-1,t-1} + w(X_t) \epsilon_j (1 - \ell_{j,t}) + b_{j,t} + \xi_t - \theta_{j,t} \quad (12)$$

$$c_{j,t} \geq 0, \quad 0 \leq \ell_{j,t} \leq 1 \quad (13)$$

$$K_{t+1} = K(X_t) \quad (14)$$

$$H_t = H(X_t) \quad (15)$$

and given $\{A_t, \delta_t, \eta_t, \Psi_t, N_t\}_{t=s}^{\infty}$ and the laws of motion for the aggregate capital stock and labor input where $s$ is the household’s birth year. Since a household dies at the end of period $J$, $V_{J+1,t} = 0$ for all $t$. A solution to the household’s problem consists of a sequence of value functions: $\{V_j(x_{j,t}; X_t)\}_{j=1}^{J}$ for all $t$, and policy functions: $\{a_{j,t}(x_{j,t}; X_t), c_{j,t}(x_{j,t}; X_t), \ell_{j,t}(x_{j,t}; X_t)\}_{j=1}^{J}$ for all $t$.

### 2.5 Government

The government raises revenue by taxing income from labor and capital at the flat rates $\tau^\ell$, and $\tau^a$, respectively. It receives additional revenue by imposing a 100-percent tax on all accidental bequests. Total accidental bequests in period $t$ are:

$$Z_t = \sum_{j=2}^{J+1} (1 - \psi_{j-1,t-1}) R(X_t) a_{j-1,t-1} (x_{j-1,t-1}; X_{j-1,t-1}) N_{j-1,t-1}$$

and total government tax revenue is

$$T_t = \sum_{j=1}^{J} \theta_{j,t}(x_{j,t}; X_{j,t}) N_{j,t} + Z_t$$

Note that $\theta_{j,t}$ depends on $\{x_{j,t}; X_{j,t}\}$ since it is a function of $\ell_{j,t}$ by (10).
Total government expenditure is the sum of government purchases, public pension benefits, interest on the public debt, and lump-sum transfers. Government purchases are set exogenously to $G_t$. Aggregate pension benefits are given by

$$B_t = \sum_{j=1}^{J} b_{j,t} N_{j,t}$$

We assume that the household’s pension benefit $b_{j,t}$ is proportional to its average wage before retirement and is constant after retirement. The household’s pension benefit $b_{j,t}$ is given by

$$b_{j,t} = \begin{cases} 0 & \text{for } j = 1, 2, \ldots, j_r - 1, \\ b_{j_r,t+j_r-j} & \text{for } j = j_r, j_r + 1, \ldots, J \end{cases}$$

where $j_r$ is the retirement age. Then the constant amount of real benefits received by a new retiree at time $t + j_r - j \leq t$, $b_{j_r,t+j_r-j}$, in (19) is given by

$$b_{j_r,t+j_r-j} = \lambda_{t+j_r-j} \frac{1}{j_r-1} \sum_{i=1}^{j_r-1} w_{t+i-j} \epsilon_j (1 - l_{j,t+i-j})$$

where $\lambda$ is the replacement ratio of the pension benefit. The public debt is set exogenously and evolves according to

$$D_{t+1} = R(X_t)D_t + G_t + B_t + \Xi_t - T_t.$$  

Aggregate lump-sum transfers, $\Xi_t$, are set so as to satisfy this equation, and the per capita transfer, $\xi_t$, is determined from the equation

$$\Xi_t = \sum_{j=1}^{J} \xi_t N_{j,t}$$

A government policy in period $t$ is $\Psi_t \equiv \{\{\theta_{j,t}\}_{j=1}^{J}, \tau_{l,t}, \tau_{l,t}^{\nu}, G_t, D_{t+1}, \lambda_t\}$. Given $\Psi_t$ and $D_t$, the transfer $\Xi_t$ can be derived from the period government budget constraint (21).
2.6 Recursive Competitive Equilibrium

Having completed the description of the economy we can now define a recursive competitive equilibrium.

Definition 1: Recursive Competitive Equilibrium

Given \( \{A_t, \delta_t, \Psi_t, N_t\}_{t=0}^{\infty} \), a recursive competitive equilibrium is a set of household value functions \( \{V_j(x_{j,t}; X_t)\}_{j=1}^{\infty} \) for all \( t \), and associated policy functions: \( \{a_{j,t}(x_{j,t}; X_t), c_{j,t}(x_{j,t}; X_t), \ell_{j,t}(x_{j,t}; X_t)\}_{j=1}^{\infty} \) for all \( t \), factor prices \( \{w(X_t), r(X_t)\}_{t=0}^{\infty} \) and aggregate policy functions for capital \( K_{t+1} = K(X_t) \) and labor input \( H_t = H(X_t) \) such that:

- Given the functions of factor prices \( \{w(X_t), R(X_t)\} \) and the aggregate policy functions for labor and capital the household policy functions \( \{a_{j,t}(x_{j,t}; X_t), c_{j,t}(x_{j,t}; X_t), \ell_{j,t}(x_{j,t}; X_t)\} \) solve the household’s dynamic program (11)-(15).
- The factor prices are competitively determined so that (5) and (6) hold, and \( R_t = R(X_t) \equiv 1 + r_t - \delta_t \) and \( w_t = w(X_t) \).
- The commodity market clears:
  \[ Y_t = C_t + I_t + G_t \]
  where \( C_t = \sum_j c_{j,t}(x_{j,t}; X_t) N_{j,t} \) is aggregate consumption and \( I_t = K_{t+1} - (1 - \delta_t)K_t \) is aggregate investment, and \( G_t \) is government purchases.
- The laws of motion for aggregate capital and the effective labor input are given by:
  \[ K(X_t) = \sum_j a_{j,t}(x_{j,t}; X_t) N_{j,t} \]
  \[ H(X_t) = \sum_j \xi_j (1 - \ell_{j,t}(x_{j,t}; X_t)) N_{j,t}. \]
• The government budget constraint is satisfied in each period:

\[ D_{t+1} + T_t = R(X_t)D_t + G_t + B_t + \Xi_t \]

In our simulations we assume that the economy eventually approaches a stationary recursive competitive equilibrium. Before defining a stationary recursive competitive equilibrium we first define some of the building blocks.

**Definition 2: Stationary population distribution**

Suppose that the fertility rate and the conditional survival probabilities are constant over time: \( n_{1,t} = n_1 \) for all \( t \) and \( \psi_{j,t} = \psi_j \) for all \( t \) and \( j \). Then a stationary population distribution, \( N^*_t \), satisfies \( N^*_t + 1 = \Gamma^* N^*_t \) and \( N^*_{t+1} = (1 + n_1) \cdot N^*_t \) where

\[
\Gamma^* = \begin{bmatrix}
(1 + n_1) & 0 & 0 & \ldots & 0 \\
\psi_1 & 0 & 0 & \ldots & 0 \\
0 & \psi_2 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \psi_{J-1} & 0
\end{bmatrix}
\]

A stationary population distribution has two desirable properties. First, cohort shares in the total population are constant over time: \( N^*_{j,t+1}/N^*_t = N^*_j/N^*_t \) for all \( t \). Second, the aggregate population growth rate is time-invariant: \( n_t = N^*_{t+1}/N^*_t = n_1 \) for all \( t \). This allows us to convert the growth economy into a stationary economy using the following transformations:

\[
\tilde{c}_{j,t} = \frac{c_{j,t}}{A_t^{1/(1-\alpha)}}, \quad \tilde{a}_{j,t} = \frac{a_{j,t}}{A_t^{1/(1-\alpha)}}
\]

Other per-capita variables in the household budget constraint are transformed in same way. Aggregate variables in period \( t \) are transformed by dividing by \( A_t^{1/(1-\alpha)} \cdot N_t \) except for aggregate labor input, which is transformed by dividing by \( N_t \).

**Definition 3: Stationary recursive competitive equilibrium**
Suppose the population distribution is stationary and the growth rate of total factor productivity is constant over time: \( \gamma_t = \gamma^* \) for all \( t \). Then a stationary recursive competitive equilibrium is a recursive competitive equilibrium that satisfies:

\[
\tilde{c}_{j,t} = c^*_j, \quad \tilde{a}_{j,t} = a^*_j, \quad \tilde{\ell}_{j,t} = \ell^*_j
\]

for all \( t \) and \( j \), i.e., the factor prices are constant over time: \( \{r_t, \tilde{w}_t\} = \{r^*, \tilde{w}^*\} \) for all \( t \) where \( \tilde{w}^* = w_t^*/A_t^{1/(1-\alpha)} \).

This completes the description of the model.

3 Calibration

The model is calibrated to Japanese data. The values of the parameters and sources of the exogenous variables are reported in Table 1. We assume that each household has one adult member. New households are formed when individuals reach the age of 21 and households die no later than the end of the 100th year of life, i.e., \( J = 80 \).

We assume that the period utility function is logarithmic:

\[
u(c_{j,t}, \ell_{j,t}; \eta_{j,t}) = \phi[\eta_{j,t} \log(c_{j,t}/\eta_{j,t})] + (1 - \phi) \log(\ell_{j,t}). \tag{23}\]

The calibration of the other structural parameters is done in the following way. We set the capital share parameter, \( \alpha \), to reproduce the average capital share of output in Japanese data over the period 1984-2000. The preference discount factor, \( \beta \), is chosen so that the steady-state value of the after-tax real interest rate equals average value in Japanese data over the period 1984-2000. The preference parameter for leisure, \( \phi \), is chosen so that steady-state hours per worker equals average weekly hours per worker in Japanese data over the period 1984-2000.\(^{13}\)

\(^{13}\)Even though we have data extending back to 1960, the sample period used in calibrating the parameters is restricted to 1984-2000. The reason for this is that sample averages of, e.g., the capital-output ratio are likely to be closer to their long-run averages when data from the 1960s and 1970s are omitted. Under the maintained null hypothesis of our model, data during this period are dominated by convergence to the steady-state from a low initial capital stock.
Dynamic simulations require values for the initial state of the economy in 1961 and for the entire future time path of the exogenous elements of the state vector. Hayashi, Ando and Ferris (1988) report asset holdings by generation using data from 1983-1984. We use their data to determine the asset shares of each cohort in 1961 and then re-scale to reproduce the value of the aggregate Japanese capital stock in 1961.

The aggregate state vector $X_t$ consists of total factor productivity, the depreciation rate, the family scale, the age distribution of the population, the asset holding of each cohort and the government policy variables. Total factor productivity is calculated by the standard growth accounting method using a calibrated capital share $\alpha$ and data on the capital stock and labor input reported in Hayashi and Prescott (2002) for the period 1961 through 2000. In our baseline model, we assume that TFP recovers linearly to a growth rate of 2 percent per annum between 2000 and 2010, and then grows thereafter at a constant rate of 2 percent per year. We also report results below that examine the robustness of our conclusions to this assumption. The depreciation rate varies over time and is measured using data provided by Hayashi and Prescott (2002) up through 2001. After 2001 the depreciation rate is assumed to remain constant at its 2001 value of 0.076. Household’s labor efficiencies vary with age but the efficiency profile is assumed to be constant over time. The labor efficiency profile, $\varepsilon_j$, is constructed from Japanese data on employment, wages, and weekly hours following the methodology described in Hansen (1993).

The net fertility rate, $n_{1,t}$, is calibrated to data on the growth rate of 21-year-olds for the period 1961-2000, and the series is extended to 2050 using projections of the National Institute of Population and Social Security Research (IPSS). After 2050 we assume that the growth rate of 21-year-olds recovers over a 15 year period to zero and is then constant at zero thereafter. Conditional survival probabilities, $\psi_{j,t}$, are based on life tables produced by IPSS through 2050. After 2050 the survival probabilities are held fixed at their 2050 levels. These assumptions about fertility and survival rates in conjunction with an initial age-population distribution are used to produce

---

14See the data appendix in Braun, et al. (2005) for more details.
15More details on the construction of these variables is found in the Appendix.
an age distribution of the population at each date using equations (1)-(3).

Figure 1 shows the implications of our baseline demographic assumptions for the time path of fractions of different age groups in total population. The figure also displays the actual cohort shares and the official IPSS open-economy projections. These are quite close to the model predicted series which abstract from immigration and emigration flows. Our demographic assumptions imply that the Japanese population will fall by about 50 percent over the next 100 years.

We allow family scale to vary over time. Our calibration requires several simplifying assumptions about how families evolve over time. A key assumption is that the number of children born to a household of age $j$ in period $t$ is given by $m_{j,t} = f_t m_j$, where $m_j$ is a time-invariant indicator of the relative number of births occurring in each year of the parent’s life cycle and $f_t$ is a time-varying shock to aggregate fertility. The time series of $f_t$ together with the $m_j$ determine the number of children in a household of a given age at each date. We calibrate $f_t$ and $m_j$ from cross-sectional data on the number of children in households of different ages in 2000 and the time series of 21-year-olds, $N_{j,t}$.

Government purchases, the labor income tax rate, and the capital income tax rate are taken from data provided by Hayashi and Prescott (2002) for the 1961-2001 period and after that the tax rates are held fixed at their 2001 levels. The capital income tax rate is measured as the tax on capital income divided by capital income, and the wage income tax rate is measured as the sum of direct tax on households and the social security tax payments divided by wage income.

Our baseline specification assumes that the amount of government debt is fixed at zero. In Section 5.4 we will extend the baseline model to allow for time-variation in government debt. This extension only has a negligible effect on the model’s implications for the national saving rate so we omit government debt from our baseline model.

All variants of the model assume public pension benefits to be equal to 17 percent of average earnings in working periods up through 1976 and 40 percent thereafter following Oshio and Yashiro (1998). Chen, İmrohoroğlu, and İmrohoroğlu (2005) make this same assumption in their overlapping
4 Assessing the Model’s Performance Using Historical Data

In this section, we use our model to simulate the Japanese saving rate from 1961 to 2000. Our ultimate objective is to use our model to make projections about the future course of the saving rate. However, before doing that we first demonstrate that we have a good model by documenting its in-sample performance.

The Japanese national saving rate and after-tax real interest rate have exhibited substantial variation during the decades following 1960. The saving rate peaks in excess of 25 percent in the late 1960s, then fluctuates between 10 and 15 percent from the early 1970s until 1990, and finally falls to about 5 percent during the 1990s. The after-tax real return on capital varies between 12 and 21 percent between 1961 and 1973. From the mid-1970s to 1990 it ranges between 5 and 6 percent and then falls below 4 percent in the 1990s.

To what extent are the large historical variations in Japanese saving rates a puzzle for economic theory? Christiano (1989) investigates whether recovery from the destruction of World War II can account for these movements. He posits a low initial capital stock in a neoclassical growth model and finds that the large observed swings in the Japanese saving rate are a puzzle for standard economic theory. Chen, İmrohoroğlu, and İmrohoroğlu (2005) revisit this same question and find that a model similar to the one used here, but with constant birth and death rates over time and exogenous labor, can account for much of the variation in the Japanese saving rate in historical data. The major reason for their success is that they allow TFP growth to vary over time.

More recently, Chen, İmrohoroğlu, and İmrohoroğlu (2006b) incorporate time-varying birth and death rates into their model, as in the analysis reported here. The model continues to perform well in accounting for historical saving behavior. However, allowing for demographic variation results in little increase in explanatory power as compared to a specification with only time-
varying TFP growth. This conclusion contrasts with our findings in Braun, Ikeda and Joines (2005). We compare steady states and conduct a dynamic analysis calibrated to Japanese data from 1990 and 2000 and find that demographics and TFP growth are roughly equally important in accounting for the observed declines in saving and interest rates in the 1990s.

Our model differs from the computable overlapping generations models of Chen, İmrohoroğlu, and İmrohoroğlu (2005, 2006b) in several respects. Our households have an endogenous labor supply decision.\(^\text{16}\) Allowing for a labor supply decision provides another way for households to smooth consumption and thus can affect households’ saving decisions. We also allow the size of families to vary over time in a way that is consistent with the number of under-21-year-olds in the Japanese economy in any given year. Time variation in family scale affects consumption-saving decisions. With these extensions our model does a reasonably good job of accounting for the observed variation in Japanese saving. The model also reproduces some of the principal movements in the after-tax real interest rate, output, and hours per worker.

Figure 2 displays our baseline results for the period 1961-2001. The figure has four panels that show the behavior of the national saving rate, the after-tax real interest rate, hours per worker and the growth rate of GNP.\(^\text{17}\) The data are all taken from Hayashi and Prescott (2002). For purposes of comparison we also report simulation results from Chen, İmrohoroğlu, and İmrohoroğlu (2006a). They consider an infinite horizon model with a labor supply decision that allows for exogenous time-variation in the depreciation rate, the tax rate on capital, exogenous government purchases, TFP and population growth. Their simulation results are labeled CII in the panels of Figure 2.

The baseline model tracks the observed saving rate reasonably well. It reproduces the 1961 value of the saving rate in Japanese data. The empirical

\(^\text{16}\)Chen, İmrohoroğlu, and İmrohoroğlu (2006a) and Braun, Okada and Sudou (2006) apply infinite-horizon, representative-agent models with flexible labor supply to Japanese data.

\(^\text{17}\)The national saving rate is defined as the ratio of Net National Product minus private consumption minus government consumption to NNP. The after-tax real interest rate is the after-tax real return on capital.
saving rate reaches its maximum value of 27 percent in 1970. The simulated series reaches its maximum of 25 percent in the same year. From 1970 to 1991 the model understates the level of the Japanese saving rate with a maximum gap of 5.5 percent in 1983. But the gap between the model and the data falls in 1990s. The observed series declines from 14.9 percent in 1990 to 5.7 percent in 2000, while the simulated series declines from 13.7 percent to 6.9 percent.

Our data set, which is based on the 1968 system of national accounts (SNA), stops in 2000.\textsuperscript{18} We compare the model’s predictions with more recent saving data using national saving from the new 1993 system of national accounts. This series is not directly comparable to the Hayashi-Prescott series. While the two measures of saving differ in level, they exhibit similar declines during the 1990s. In this sense, both empirical measures are qualitatively consistent with the decline in saving predicted by the model for that period. In addition, the measure of the national saving rate based on 1993 SNA data continues to decline between 2000 and 2004, as does the model’s predicted saving rate.

Our model also performs well when compared with the CII model. Their model performs better between 1995 to 2000 and worse between 1975 and 1990 and between 2000 and 2002. Expectations about future TFP growth play an important role in the relatively good performance of their model between 1995 and 2000 and the unusual movements in the CII saving rate after 2000. They assume that TFP growth recovers to 3.15 percent in 2001 and is constant at this value thereafter. This assumption acts to depress the saving rate from 1995-2000 and induces a sharp recovery in the saving rate after 2000. In their baseline model the saving rate falls from 14 percent in 1990 to 5 percent in 2000. If instead TFP growth is assumed to recover according to a linear rule to a 2 percent growth rate over a 10 year period, as we assume, the decline in the saving rate in their model is much smaller. It declines from 14 percent in 1990 to 9 percent in 2000.

The CII model also allows the population growth rate to vary over time.

\textsuperscript{18}1968 SNA data are not reported by the Japanese government after 2001. Our data also use a replacement cost measure of depreciation constructed by Hayashi and Prescott (2002), which is available only through 2000.
It falls from 1.3 percent in 1990 to 0 percent in 2000 in their dataset. In future years they assume that the population growth rate jumps to 1.2 percent in 2001 and is unchanged at this value thereafter. If instead the population growth rate is assumed to be zero in future years and TFP growth follows our conditioning assumptions then the saving rate in the CII model falls from 14 percent in 1990 to 7 percent in 2000 which is about the same magnitude of decline in the saving rate produced by our model. Observe also that the gap between the 2000 value of the saving rate in this simulation and the previous simulation which only alters the assumption about productivity growth is 2 percentage points. We will provide evidence in Section 5.1 that the overall contribution of demographic change to the decline in the saving rate in our model ranges from 2 to 3 percentage points during the 1990s. The role of expectations is also discussed in more detail in Section 5.3.

We use the root-mean-squared error criterion to measure overall fit of the simulated saving rate in our baseline model and the CII model. Our baseline model produces a root-mean-squared error of 2.9 percent and the CII model produces a root-mean-squared error of 3.8 percent over the 1961-2000 sample period.

The baseline model also does reasonably well in reproducing the after-tax real interest rate. The gap between the model and data is largest between 1966 and 1976. The model reproduces the general year-to-year movements in the data during this period but understates the high real return to capital. The baseline model does much better from 1976 to 2000. During that period the gap between the model and the data is always less than 60 basis points. The model predicts a decline of 130 basis points during the 1990s, which is 80 basis points smaller than the observed decline of 210 basis points. Our baseline model also compares favorably with the CII model. That model overstates the real interest rate for most periods after 1975. The root-mean-squared error for our baseline model is 2.1 percent as compared to 2.8 percent for the CII model.

Interestingly, the baseline model also reproduces the secular decline in Japanese average hours per worker between 1961 and 1990.\textsuperscript{19} Empirical

\textsuperscript{19}The model expresses hours worked as a share. When converting this share to a measure of weekly hours we assume a weekly time endowment of 112 hours (16 hours per day).
weekly hours per worker decrease from 50.3 to 43.5 during that period, while the simulated series decreases from 49.6 to 41.4 hours per week. The match is particularly good prior to 1976. Modeling variations in family scale helps match the trend in the data. Over the 1961-2000 sample period family scale has fallen substantially, and this acts to increase households’ demand for leisure relative to consumption goods. The CII model, does a better job of matching hours in the 1980s but fails to reproduce the magnitude of the secular decline in hours. This produces a higher root-mean squared error of 2.39 percent as compared to 1.9 percent for the baseline model.

One puzzling feature of these results is that weekly hours per worker in the model decline from 43.4 in 1979 to 39.9 in 1983, whereas Japanese hours per worker remained above 43 hours per week through 1989. We have explored the source of this discrepancy and found that the reason model hours fall is a rising tax rate on labor income. Between 1961 and 1978 the labor income tax increased at an annualized rate of 0.47 percentage points per year. In the next 3 years it jumped by 4.5 percentage points and then rose by another percentage point in the next 2 years. After that the growth rate of the labor income tax rate slowed to 0.28 percent per annum on average. When we simulate the model with a constant labor income tax rate the model no longer predicts a decline in hours between 1979 and 1983. The CII model, in contrast, assumes a zero tax on labor in all periods.

The predictions of the baseline model for per capita output growth are also quite good. The model reproduces both the amplitude and timing of movements in the growth rate of Japanese output. Here the CII model performs a bit better producing a root-mean-squared error of 1.4 percent as compared to 1.6 percent for the baseline model. The reason for this difference is that the CII model performs noticeably better in the early 1960s. One reason for this difference may be due to the fact that we have to specify an initial population-wealth distribution in 1960. Lacking direct observations on this distribution in 1960 we extrapolated backwards using data from 1983-1984 as described in Section 3. We have found that the effect of the choice of the initial age-wealth distribution quickly dies out. However, this choice can affect the evolution of capital in the first four or five years. If we instead calculate the root-mean-squared error for output for the sample-period 1970-
2000 the root-mean-squared is 1.3 percent for both models.

Overall, the performance of our life-cycle model reasonably well. In particular its performance is better, in most dimensions than one leading representative agent model that abstracts from life-cycle effects.

We also considered several variants of our baseline specification. We varied the degree of risk aversion, fixed the depreciation rate on capital, and explored the role of social security. The properties of the model with higher risk aversion are reported in Section 5.4 below. Fixing the depreciation rate doesn’t affect the model’s implications for the saving rate after 1970 but does cause the model to overstate saving throughout most of the 1960s. Depreciation rates are large prior to 1970. If the depreciation rate is assumed fixed, the predicted saving rate through 1968 is as high on average as the values observed from 1969 through the early 1970s. Finally, alternative scenarios for social security had only small effects on the results. For instance, if social security is assumed not to exist, the maximum difference between the simulated saving rate and that in the baseline specification is 0.65 percent and this occurs in 1961.\footnote{Both the depreciation rate and the scale of social security are assumed to be fixed beyond the year 2000 in our baseline model. Consequently, holding them fixed from 1961 to 2000 has no material effect on the model’s projections for future years.}

5 Projections

5.1 Baseline Projections

The success of our model in reproducing much of the year-to-year pattern of saving rates as well as the long-term decline in interest rates suggests that we have a good theory of the Japanese national saving rate. We now use this same theory to project the future course of the national saving rate. Figure 3 displays baseline projections and two other sets of projections that are designed to isolate the role of demographics and TFP. Recall that our baseline conditioning assumptions rely on projections from IPSS for the net fertility rates and mortality rates through 2050. The annual growth rate of TFP is assumed to recover gradually to two percent between 2000 and 2010.
These assumptions are discussed in more detail in the calibration section above.

The single most important fact about Japanese saving in the post-World War II period has been its magnitude. As recently as 1990 the saving rate was 15 percent in Japan, or about three times as large as in the United States. Our baseline results indicate that in future years the trend level of the Japanese saving rate will not exceed 5.2 percent. Saving rates fall to a low of −0.2 percent in 2009 and eventually rise to a new steady-state value of 5.1 percent by the year 2140. This pattern is not monotonic, however. The saving rate increases to 3.0 percent in 2025 as a result of the echo of the baby boom. It then falls again to 1.7 percent in 2045 before increasing gradually to the new steady state.

One way to identify the distinct roles of demographics and TFP for the aggregate saving rate is to run counterfactual simulations. Figure 3 reports results from two such simulations. The 1980s no change simulation, holds the net fertility rate from 1990 on fixed at 1 percent, which is close to the average growth rate of 21-year-olds during the 1980s. In addition, the mortality rates are held fixed at their 1990 levels. TFP growth from 1990 on is set to 3.1 percent, which is the average value of TFP growth in Japanese data during the 1980s. This set of assumptions is meant to illustrate what might have happened if the demographic and TFP growth patterns of the 1980s had persisted forever. The second counterfactual simulation, 1980s population, differs from the first in assuming that TFP growth follows our baseline conditioning assumptions and only the fertility rate and the mortality rates are held at levels representative of the 1980s.

Consider the 1980s no change simulation. The most striking thing about this simulation is that the variation in the saving rate during and after the 1990s is very small. Observe next that even though the population growth and mortality rates are fixed at their 1980s levels, the saving rate does decline until 2014 to a low of 7.3 percent. This is due to the aging of the baby-boom generation. The new long-run steady-state value is 8.7 percent. Next compare the 1980s no change simulation with the 1980s population simulation, which shows a large drop in the saving rate in the early part of the twenty-first century. From this we can see that low TFP growth between
1990 and 2010 plays the dominant role in the evolution of the baseline saving rate through about 2012. By 2012, though, demographics account for one half of the gap between the baseline and 1980s no change simulation. The contribution of demographics to the gap then rises to 70 percent in 2031 and remains between 70 and 80 percent until 2107. In the final steady state, demographics account for 56 percent of the total gap between the baseline simulation and the 1980s no change simulation.

Taken together these results suggest that demographic variation will exert considerable influence on the Japanese saving rate in the twenty-first century.

Figure 3 also reports projections for the after-tax real interest rate. There are some striking differences among the three projections. The baseline results presented in the lower panel of Figure 3 suggest that after-tax real interest rates have bottomed out and will gradually recover to levels experienced by Japan between the mid-1970s and the mid-1990s. After reaching a minimum value of 4.0 percent in 2006, the after-tax real interest rate rises to 5 percent by 2025 and to 5.1 percent in 2055 before settling at its final steady-state value of 5.2 percent. Comparing the two counterfactual simulations, we see that TFP plays a more significant role than demographics in after-tax real interest rate projections. The 1980s no change simulation is particularly interesting. This specification has the after-tax interest rate rising during the 1990s. We will return to discuss this final point in more detail in Section 5.3.

The rich demographic structure of our model provides us with a way to understand what changes in the microeconomic structure of this economy are driving variations in the aggregate saving rate. The national saving rate is defined by the net increase in the aggregate capital stock divided by the net national product 

\[ s_t = \frac{K_{t+1} - K_t}{Y_t - \delta_t K_t}. \]  

The net national saving rate in turn can be decomposed into a weighted sum
of age-specific household saving rates.

\[ s_t = \sum_{j=1}^{J} \frac{a_{j,t}N_{j,t}}{Y_t - \delta t K_t} - \sum_{j=1}^{J} \frac{a_{j,t-1}N_{j,t-1}}{Y_t - \delta t K_t} \]

\[ = \sum_{j=1}^{J} \frac{N_{j,t}}{Y_t - \delta t K_t} [a_{j,t} - a_{j-1,t-1}] + \sum_{j=1}^{J} \frac{a_{j-1,t-1}}{Y_t - \delta t K_t} [N_{j,t} - N_{j-1,t-1}] \]

\[ = \sum_{j=1}^{J} \frac{y_{j,t}N_{j,t}}{Y_t - \delta t K_t} \frac{a_{j,t} - a_{j-1,t-1}}{y_{j,t}} + \sum_{j=1}^{J} \frac{a_{j-1,t-1}N_{j-1,t-1}}{Y_t - \delta t K_t} [\psi_{j-1,t-1} - 1] \]

\[ = \sum_{j=1}^{J} \frac{y_{j,t}N_{j,t}N_{j,t}}{Y_t - \delta t K_t} \frac{a_{j,t} - a_{j-1,t-1} - q_t}{y_{j,t}} \]

\[ \equiv \sum_{j=1}^{J} \chi_{j,t} s_{j,t} \]

(25)

where

\[ \chi_{j,t} = \frac{y_{j,t}N_{j,t}}{Y_t - \delta t K_t}, \quad q_t = \sum_{j=1}^{J} \frac{a_{j-1,t-1}N_{j-1,t-1}}{N_t} (1 - \psi_{j-1,t-1}) \]

and where \( s_{j,t} \) is the individual saving rate, \( a_{j,t} \) is the asset holding of an individual of age \( j \) at the end of time \( t \), \( N_{j,t} \) is the population of age \( j \) at time \( t \), and \( \psi_{j,t} \) is the age-\( j \) survival probability at time \( t \). The weight \( \chi_{j,t} \), is simply the share of net national income accruing to households of age \( j \).

Let \( \mu_{j,t} \equiv N_{j,t}/N_t \) denote cohort \( j \)'s share in total population in period \( t \). Then using equation (25) we can express the change in the net national saving rate from \( t - k \) to \( t \) as the sum of three components

\[ \mu_{j,t} \]

Note that \( s_{j,t} \), the individual saving rate, corresponds to a situation where the government gathers accidental bequests and redistributes them in a lump-sum way equally among all surviving individuals. An individual’s saving during period \( t \) is defined as assets held at the end of the period, \( a_{j,t} \), less initial assets. Initial assets are the sum of assets held by the individual at the end of the previous period, \( a_{j-1,t-1} \), and \( q_t \), the individual’s share of the assets held at the end of period \( t - 1 \) by individuals who die before the beginning of period \( t \).
\[ s_t - s_{t-k} = \sum_{j=1}^{J} \chi_{j,t-k}(s_{j,t} - s_{j,t-k}) + \sum_{j=1}^{J} s_{j,t}z_{j,t-k}(\mu_{j,t} - \mu_{j,t-k}) + \sum_{j=1}^{J} s_{j,t}\mu_{j,t}(z_{j,t} - z_{j,t-k}) \]

(26)

where \( z_{j,t} = \frac{y_{j,t}}{(Y_t - \delta_t K_t)/N_t} \) is the per capita income of individuals of age \( j \) relative to overall per capita income in the economy. We will refer to the first, second, and third terms in equation (26) as respectively the saving rate component, the cohort size component and the relative income component. The cohort size component is a weighted average of changes in the relative size of each cohort, and the relative income component is a weighted average of changes in the income of an age-\( j \) household relative to overall per capita income. The saving rate component is a weighted average of changes in individual saving rates. It summarizes the endogenous response of household saving rates to variations in preferences and budget constraints.\(^{22}\) Preferences can change from one cohort to the next because of changes over time in survival probabilities and family scale (see equations 8 and 23). Budget constraints depend on tax rates, transfers, and factor prices. Factor prices in turn respond to a variety of shocks, including technology, demographics, and fiscal policy. Thus, demographic change affects the saving rate directly through the cohort size component and indirectly through the other two components. In principle, these indirect effects can either reinforce or attenuate the direct effect due to changes in cohort size.

Figure 4 reports two plots of this decomposition of the national saving rate using data from the baseline simulation. The upper panel shows decade changes of the national saving rate for the period 1961-2000. The lower panel shows differences over successively longer horizons starting from a base year of 1990. Consider first the upper panel. According to the model the saving rate component has been the primary source of historical decade-level variations in the national saving rate. It is the largest component in all but one decade

\(^{22}\)It should be kept in mind that the saving rate at each age depends on the entire lifetime budget constraint rather than the single-period constraint for the current period.
(1961-1970), when changes in the relative income component are largest. The cohort size component is small in historical data. Chen, İmrohoroğlu, and İmrohoroğlu (2006a, 2006b) find that modeling demographics is not important for understanding the evolution of the saving rate over a similar sample period. The upper panel of Figure 4 suggests that their finding may stem from the fact that cohort size movements were relatively small during this period.\(^{23}\)

Are cohort effects always small and in particular smaller than saving rate effects? Results reported in the lower panel of Figure 4 suggest that the answer is no. The size of the cohort effect steadily increases as the forecast horizon is expanded. Through 2030 the saving rate component is the largest source of variation in the national saving rate. But after that the cohort size component is always larger. By 2100 the cohort size component is 2.5 times as large as the saving rate component.

Decomposing the saving rate into these three components offers some insight into one role of demographics but does not tell the whole story. This is because the saving rate and relative income components are themselves affected by demographics, as well as by TFP and other relevant exogenous shocks including fiscal policy. The cohort size component, on the other hand, is affected only by demographic change and thus measures only the direct effects of such change on saving rates.

By way of illustration, the cohort size effect in Figure 4 indicates that demographic change directly reduced the saving rate by 2.1 percentage points between 1990 and 2000. We can gauge the total effect of demographics, both direct and indirect, by simulating our model under the assumption that only demographics changed after 1990, with TFP growth, fiscal policy, and other variables held fixed at their 1990 values. This “demographics only” simulation is the polar opposite of the previous section’s 1980s population simulation, which held demographics fixed at levels representative of 1990 and allowed all other exogenous inputs to vary. The demographics only simulation produces a decline in the saving rate of 3.1 percentage points

\(^{23}\)Although not reported here due to space constraints, the saving rate component can be further decomposed by age. Doing so reveals that saving rates change in the same direction for almost all age groups during a given decade.
between 1990 and 2000. Thus, the indirect effects of demographic change during the 1990s reinforce the direct effects and are about half as large as the direct effects.

The information in Figure 4 reinforces the conclusion from Figure 3 that TFP shocks are the primary determinant of variations in the saving rate in historical Japanese data. But both figures also imply that demographic change will be the dominant factor in explaining a long-run decline in trend saving rates from the levels seen in the late 1980s and early 1990s.

5.2 Implications of Changing Demographics for Other Macroeconomic Variables

So far, we have concentrated on the implications of changing demographics for the future evolution of the national saving rate and the after-tax real interest rate. Longer life expectancies and lower fertility rates also have implications for other macroeconomic variables. We now briefly discuss these implications. To isolate the contribution of demographic factors for these other variables we would like to understand what would have happened to consumption and other macroeconomic variables if the factors that determine the population distribution do not change. We do this by examining the behavior of these variables in the 1980s population simulation discussed above.

In this simulation the two factors that determine the population growth rate — the fertility rate, $n_{1,t}$, and the survival probabilities, $\psi_{j,t}$, — are both held fixed at their 1990 values. TFP is assumed to follow its baseline trajectory. It should be emphasized at the outset that the current population distribution is a complicated distributed lag of previous fertility and survival rates (see equation (1)) and that these conditioning assumptions are not sufficient to freeze the population distribution in 1990. This counterfactual simulation does not, for instance, control for the aging of the baby-boom cohorts. These conditioning assumptions do, however, substantially reduce the overall variation in the population distribution in future years. The results from this counterfactual simulation are reported in Table 2. Results are reported as percentage deviations from the baseline forecast for a variety of forecast horizons. A positive sign implies that a particular variable is above its baseline
value in that particular year. All variables are expressed in per capita terms.

Fixing the fertility rate and the survival probabilities has important implications for both the situation of the economy in 1990 and its evolution after 1990. Per capita output is depressed by 2 percent in 1990. Capital and labor input are depressed 3.82 and 1.14 percent. The capital stock is lower because there is less need to save for retirement since life expectancies will remain short in future years. A shorter average life expectancy also leads households to enjoy more leisure during their working years and labor input falls relative to the baseline.

The response of most variables is not monotonic in the forecast horizon. At shorter forecast horizons, abstracting from changing fertility and survival rates acts to depress output, consumption and the capital stock. In 2010, the per capita capital stock is 9 percent lower than its baseline value. Output is 4 percent lower and consumption is 3.5 percent lower than their baseline values. These responses are due primarily to the aging of baby-boom cohorts who now have relatively short retirement periods. At longer forecast horizons continued high fertility rates act to raise per capita labor input by lowering the fraction of retirees to workers. This raises per capita consumption, output and the capital stock. By 2050 per capita output is 12.55 percent above its baseline value, labor is 20 percent above its baseline value and consumption is 7.6 percent above its baseline value.

5.3 Projections using Alternative Conditioning Assumptions

How sensitive are the model’s projections to our conditioning assumptions about total factor productivity and demographics? In order to answer this question we report four other simulations in Figure 5. Two of these variants maintain our baseline assumptions for TFP growth but use either the high or low IPSS population projections rather than the intermediate projections which we use in our baseline model. The intermediate population projection implies that the Japanese population in 2050 will be 105.2 million and that 36 percent of the population will be of age 65 or above. The high population projection is 108.2 million with 33 percent of the population aged 65 and
above, and the low projection yields an estimate of 92 million with 39 percent of the total aged 65 and above. Thus, the differences in aging implied by the alternative population projections are rather modest when compared to the large overall increase in aging that occurs between 1990 and 2050. The third and fourth variants retain the baseline population projections but make alternative assumptions about the TFP growth rate. The low TFP simulation assumes that productivity growth does not recover and instead remains at 0.33 percent per year, its average value for the 1990s. This assumption of permanently low total factor productivity growth is maintained by Hayashi and Prescott (2002). The high TFP simulation assumes that TFP growth recovers to 3.1 percent per annum, its average value during the 1980s.

Consider first the results for alternative demographic assumptions. These assumptions have no discernible effect on the saving rate either in the very long run, by which point they all yield the same age structure of the population, or up until the local peak associated with the echo of the baby boom around 2025. Over intermediate forecast horizons, however, demographics exert a noticeable influence on saving. The saving rate under the high population assumption is uniformly above the baseline projection, and the decline after the local peak in 2029 is muted. The corresponding decline under the low population assumption is quite pronounced, with the saving rate falling to zero between 2060 and 2068. The effect of these alternative demographic assumptions on saving rates is nevertheless much smaller than the decline in saving compared with 1990. This is because the alternative population projections all result in age distributions of the population that are similar to each other, while the 1990 age distribution is quite different. As noted above, the elderly (aged 65 and above) are projected to constitute between 33 and 39 percent of the population in 2050, compared to 12 percent in 1990.

Varying the demographic assumptions has smaller effects on interest rates. The low (high) population assumption results in interest rates that are below (above) those predicted by the baseline model during much of the transition to the new steady-state. The differences from the baseline projection are largest during the years 2035-2086, when they range between five and twenty basis points.

The results would look very different if the low growth rate of TFP of the
1990s is assumed to be permanent while the demographic variables are set to their baseline values. Consider first the net saving rate. It remains negative into the next century and eventually approaches a new long-run value below one percent, as compared to 5.1 percent in the baseline specification. However, the saving rate with low TFP growth is above the baseline case for the years 2001-2013. This is because an anticipated recovery of TFP depresses saving in the short term.

We see similar patterns in the real interest rate. There are two distinctions between the low TFP simulation and the baseline. The real interest rate does not increase after 2007 as it does under the baseline parameterization of a recovery of total factor productivity growth. Instead, the real interest rate stays in the neighborhood of 3.5 percent between 2001 and 2052. In addition, the new steady-state interest rate is only 3.9 percent, versus 5.2 percent in the baseline case.

Finally, consider the high TFP simulation which uses actual data on TFP and demographics during the 1990s but posits a stronger recovery of TFP growth to 3.1 percent per annum between 2001 and 2010. Recall from Section 5.2 that TFP grew at an average rate of 3.1 percent during the 1980s. There are three noteworthy features about the saving rate in this simulation. First, the model predicts a permanent decline in the saving rate from 13.6 percent in 1990 to 7 percent in the final steady-state. Second, the saving rate remains at or below 5 percent through the year 2093. Third, the model fit with the data is good during the 1990s. We saw above that the 1980s no change simulation fails to account for the saving rate in the early 1990s. Comparing these two simulations which have identical assumptions for the long-run growth rate of TFP suggests that expectations about what happens to TFP growth during the 1990s really matters.

The role of expectations appears to be even more pronounced for the real interest rate. The real interest rate increases during the 1990s in the 1980s no change simulation reported in Figure 3. However, in the high TFP simulation which feeds through actual TFP growth and demographic changes, the real interest rate falls throughout the 1990s as in the data. However, these simulations are only suggestive and could simply reflect differences in the contemporaneous responses of the economy to variations in TFP. A bet-
ter way to isolate the effect of expectations is to see how future changes in TFP growth affect economic activity today.

To pursue this point further we performed a counterfactual simulation. In this simulation TFP is assumed to grow (and to be expected to grow) at its 1990s average value of 3.1% from 1990 on. If expectations matter then this should show up in the model’s performance before 1990. When we compare this counterfactual simulation to the baseline simulation we find that there are only tiny differences between the saving rate in the two models before 1985. However, from 1985 on there are discernible and growing differences. By 1988 the gap in the saving rate between the two models is 2.6 percentage points. Chen, İmrohoroğlu, and İmrohoroğlu (2006a), report a similar finding when they consider a variant of their model in which households use no-change forecasting rules. That model reproduces decade-level swings in the saving rate but produces only a moderate rise in the saving rate in the late 1980s. Taken together these results suggest that an expectation of slow growth after 1990 is important for producing a large increase in the national saving rate in Japan in the last half of the 1980s.

To summarize, we find that both changing demographics and lower productivity growth contribute to reproducing the observed decline in the interest rate from 6 percent in 1990 to 3.9 percent by the year 2000. Our results also indicate that observed and projected changes in fertility rates produce very persistent responses in the saving rate, but much smaller responses in the after-tax real interest rate. Sustained but temporary shocks to total factor productivity growth have large contemporaneous effects and expected changes in TFP also matter but do not produce much propagation over time in the model. These simulations add further support to our contention that the average value of saving rates in future years will be low relative to levels experienced in Japan before 1990. The saving rate remains low through the end of the century even under the most optimistic assumptions about TFP growth and demographics.
5.4 Government Debt

Here we consider the robustness of our conclusions to our maintained assumption that government debt is zero. In an infinite-horizon model this assumption is innocuous when lump-sum transfers are present and free to adjust. However, in an overlapping generations model the timing of government borrowing and lump-sum transfers may benefit particular generations. To explore this issue we conducted a simulation in which we used data on government borrowing. Following Broda and Weinstein (2004) we calculated the net government debt using data from the Bank of Japan Flow of Funds website for 1979-2004 and from government sources for 1961-1978. Net government debt constructed in this way varies from about 2 percent of GDP in the 1960s to 72.7 percent in 2004. The debt-output ratio is assumed to be fixed at its 2004 level in future years. Lump-sum transfers are adjusted each period to insure that the government budget constraint is satisfied. Even though the net government debt in 2004 is more than 10 times as large as that in 1990, the results from generalizing the model in this way are imperceptibly different from the baseline specification. The maximum difference between the baseline saving rate and the specification with government debt is 0.35 percent and this occurs in 1962.

It is, of course, possible that the Japanese economy is less nearly Ricardian than our model. If this is the case, we might expect the model to perform noticeably less well in explaining saving during the 1990s than during earlier decades, since government budget deficits constituted a substantially larger fraction of GDP during the 1990s. As Figure 2(a) shows, however, the model’s predictions about the level of the saving rate are no worse for the 1990s than for earlier decades. The model understates the decline in the saving rate during the 1990s by about 2.5 percentage points. The baseline version without government debt implies a drop in the national saving rate from 13.7 percent in 1990 to 6.9 percent in 2000, a decline of 6.8 percentage points. The baseline model augmented to include an exogenous debt series taken from Japanese data predicts that the saving rate drops from 13.6 percent in 1990 to 6.7 percent in 2000. The empirical analogue taken from Hayashi and Prescott (2002) shows a decline of 9.3 percentage points, from 14.9 percent in 1990 to 5.7 percent in 2000.
If the Japanese economy is indeed very non-Ricardian, our model would tend to overstate the change in the saving rate during periods of increasing government budget deficits, as during the 1990s, and to understate the change in saving during periods of decreasing deficits. But it is unclear that increasing government budget deficits are the major factor leading to the model’s failure to fully account for the decline in the national saving rate in the 1990s. The discrepancy between actual and predicted changes in the saving rate for the 1990s is not abnormally large compared with the prediction errors for other periods. For example, the model understates the increase in the saving rate from a trough in 1965 to a peak in 1970 (a period of roughly balanced budgets) by almost 4 percentage points. It also overstates the increase from a trough in 1983 to 1990 by almost 2 percentage points. Because the budget moved from an average deficit equal to 4.5 percent of GDP during 1981-85 to an average surplus of 2.6 percent of GDP during the remainder of the decade, the model could be expected to understate rather than overstate the change in the saving rate if it omitted important non-Ricardian features present in the Japanese economy. These episodes suggest that the model’s prediction errors are likely due to factors other than variation in the government budget deficit.

Another possible explanation for our finding that modeling government debt doesn’t affect the national saving rate in the 1990s is that our assumption of a constant debt-GDP ratio after 2000 understates the effects of deficit finance on the lifetime budget constraints of households alive in the 1990s. To explore this possibility we conducted other simulations in which the government debt is assumed to increase to alternatively 100 percent, 125 percent or 150 percent of output by 2060. These alternative simulations do show evidence of some non-neutralities: the real interest rate in the final steady-state increases with the final steady-state debt-GDP ratio. But the effects are quantitatively small. In the long run (by the year 2200), the reduction in the capital stock is less than 7 percent of the increase in the public debt.24 The long-run decrease in the capital stock is so small that it implies an almost

---

24This measure of crowding out is almost identical to that found by Joines (2006) in a model calibrated to U.S. data and with a lower elasticity of intertemporal substitution in consumption.
imperceptible change in the net saving rate in any year along the transition path. The real interest rate in the terminal steady state with a debt-GDP ratio of 1.5 is 5.6 percent, as compared to 5.2 percent for our baseline model with no government debt, and the maximum difference in the national saving rate across the two simulations is 0.2 percent.

We also tried an experiment designed to capture what might have happened if all of the public debt accumulated during the 1990s had been rolled over for many years. Permanently rolling over the debt is not sustainable. However, we were able to successfully simulate a version of the model in which the debt-output ratio grows at the rate of 5 percent per year until 2038 and then is held constant after 2038. In this simulation the ratio of lump-sum transfers to output is 12 percent 1990. Between 1990 and 2038 lump-sum transfers average 12 percent but show some variation over time, having a standard deviation of 1.9 percent. Their terminal value in 2038 is also 12 percent. The resulting debt-output ratio is 416 percent in 2038. This simulation exhibits somewhat larger evidence of non-neutralities. As in the previous simulations a higher debt ratio depresses capital accumulation, the capital output ratio is now 1.9 as compared to 2.2 in the baseline simulation. This raises the terminal steady-state interest rate to 6.3 percent. In addition there is now a discernible response in other variables at longer horizons. Labor input for instance is 6 percent higher in the steady-state with a 416 percent debt-GNP ratio. The biggest difference before 2038 is 1.8 percent and occurs in 2038. The response of the national saving rate is still small. The maximum difference compared to the baseline simulation occurs in 2037 and is 0.8 percent.

Generating a larger model response of the national saving rate to the government budget deficit would require more fundamental changes to the model. Such modifications might include borrowing constraints, idiosyncratic household income shocks, or adjusting distortionary taxes or rather than lump-sum taxes and transfers to balance the government budget constraint.\textsuperscript{25}

\textsuperscript{25} Joines (2006) finds that borrowing constraints alone do not make a similar model substantially more non-Ricardian. Moreover, an earlier version of our model included borrowing constraints, but they were non-binding during most of the life cycle. Large, uninsured, persistent shocks to the income process might cause borrowing constraints to
5.5 Lower Elasticity of Intertemporal Substitution

Our calibration assumes that the value of the elasticity of intertemporal substitution (EIS) is one. Our choice is supported with Lucas (1990) who argues that a value of the EIS exceeds 0.5 because values below this level imply implausible interest rate differentials in countries that exhibit small differences in consumption growth. Attanasio (1999) concludes that the value of the EIS is close to one in both the United States and the United Kingdom and Browning, Hansen and Heckman (1999) conclude that when this parameter is assumed to be constant across households it is hard to reject a value that is close to 1. Hall (1988), in contrast, argues that the small response of aggregate consumption growth to large swings in interest rates implies that the value of the EIS is unlikely to exceed 0.1. Subsequent work by Ogaki and Reinhart (1998) and Basu and Kimball (2000) that relaxes some of Hall’s maintained separability assumptions estimate the EIS to be about 0.35.

Given that the appropriate setting of this parameter is the subject of debate, we explore the robustness of our conclusions to our assumption by simulating our model using CRRA preferences with an EIS of 0.25. The two models generate almost identical long-run predictions, with the implied saving rates differing by less than 0.35 percentage points from 2069 onward. The model with the low EIS results in a higher predicted saving rate from 1974 until 2016 and a lower saving rate thereafter. The baseline model predicts that the saving rate reaches a minimum of $-0.1\%$ in 2009. The alternative model predicts a local minimum of $1.5\%$ in 2010, followed by values as low as $0.9\%$ between 2048 and 2053.

While the two models yield predictions that become increasingly similar as the forecast horizon lengthens, the baseline model does a noticeably better job of reproducing historical Japanese saving rates. The low-EIS model has a root-mean-squared error of 4.6 percentage points during 1961-2002, versus

---

bind for some individuals for a larger portion of their life cycle.

Joines (2006) also considers the real effects from increased government borrowing that is financed with distortionary taxes. He finds that if either the labor income tax or the consumption tax is adjusted, the departures from Ricardian equivalence are modest.

26In the low EIS run $\gamma = 4$ and $\beta = 1.01$. With this value of $\beta$ both models have the same terminal steady-state value of the after-tax real interest rate.
2.9 percentage points for the baseline model. The low-EIS model overstates
the saving rate throughout the 1990s, with an average prediction error of
4.3 percentage points versus 0.9 percentage points for the baseline model.
While the low-EIS model does reproduce many of the short-run changes
in the saving rate (as does the baseline model), it understates the size of
the saving rate in the 1960s observed both in the data and in the baseline
model. The low-EIS model predicts an average saving rate of 13.1 percent for
1961-1970, compared with 19.0 percent in the data and the baseline model’s
prediction of 20.4 percent. The low-EIS model also overstates the average
saving rate declines in the 1990s. It predicts a decline of 9.87 percentage
points during 1990-2000, versus a predicted decline of 6.9 percentage points
for the baseline model and 6.7 percentage points in the data.

We also performed experiments with higher settings of the EIS. If the
model is parameterized to produce an EIS of 1/3, the fit improves and the
root mean-squared error for the saving rate falls to 3.8 percent which is the
same value reported in Section 4 for the CII model.

Our results are reasonably robust to values of the EIS that range between
1/3 and 1. However, the fit of the model deteriorates significantly for values
of the EIS below 1/3. Although we don’t pursue these extensions here either
allowing for limited participation in stock-markets as in Guvenen (2006) or
Chien, Cole and Lustig (2007) or modeling home production as in Campbell
and Ludvigson (2001) could lower the range of values of the EIS that renders
our model consistent with Japanese data on the saving rate.

6 Conclusion

In this paper we have employed a general equilibrium model with a rich
demographic structure to investigate the implications of aging in Japan for
the evolution of the Japanese saving rate and other variables.

Our model implies that demographic change accounted for between 2
and 3 percentage points of the decline in the Japanese saving rate in the
1990s. In future years the role of demographics is even more important.
According to our projections, the average value of Japanese saving rates
will not exceed 5.2 percent for the remainder of the twenty-first century.
Moreover, this finding is reasonably robust to alternative assumptions about demographics and future TFP growth. The population distribution, which is a key determinant of saving, changes only gradually over time in a highly predictable way. Thus, even when we posit a robust recovery in total factor productivity growth, saving rates remain low by historical standards.

In future research we are interested in extending our model to investigate the implications of aging in Japan for social security and fiscal policy. Many workers in Japan continue to work after they receive full public pension benefits. One reason for this is that those who continue to work receive a variety of tax benefits. Many of these benefits are now being removed or reduced. We are interested in modeling household retirement decisions and understanding how these decisions are affected by government policy.
Appendix
A1. Data set

Demographics and survival probabilities

We can construct the model’s complete demographic dynamics from an initial age distribution of the population, a series of age-1 population, and a series of survival probabilities. We measure the initial population by age using Japanese data for 1961. A series of age-1 population is constructed using the historical (1961-2000) and projected (2001-2050) age-1 population.\textsuperscript{27} We calculate a series of survival probabilities in three steps. First, given the initial population by age and by sex and a series of survival probabilities by age and by sex we construct a series of population by age and by sex.\textsuperscript{28} Second, summing over sexes, we get a closed-economy series of population by age for the period 1961-2050. Third, we use the series of population by age to construct a series of survival probabilities by age. The survival probability at age $j$ and time $t$ is calculated as $\psi_{j,t} = N_{j+1,t+1}/N_{j,t}$, where $N_{j,t}$ is the population of age $j$ at time $t$. Assuming that survival probabilities remain constant after 2050 and that the age-1 population growth rate recovers to zero in 15 years and remains constant thereafter, we recursive construct time-series of population by age using equation (1).

Labor efficiency profile

The labor efficiency profile, $\varepsilon_j$, is constructed from Japanese data on employment, wages, and weekly hours from 1990 to 2000 following the methodology described in Hansen (1993). The data source is the Basic Survey in Wage Structure by the Ministry of Health, Labor and Welfare. The constructed labor efficiency profiles are 0.646 (age 20-24), 0.834 (age 25-29), 0.999 (age 30-34), 1.107 (age 35-39), 1.165 (age 40-44), 1.218 (age 45-49), 1.233 (age 50-54), 1.127 (age 55-59), 0.820 (age 60-64), 0.727 (over age 65). We interpolate these values to get labor efficiency by age. For more detail on the methodology constructing those values, see the data appendix in Braun, et al. (2005).

Capital and wage income tax rates

The capital income tax rate is measured by revenue from the tax on capital income divided by capital income, and the wage income tax rate is measured by

---

\textsuperscript{27}The data are available in the National Institute of Population and Social Security (IPSS) home-page. The IPSS projection has three different levels of population: low, medium and high. The differences among the three projections come entirely from differences in assumptions about fertility. The three projections use common survival probabilities. We take the medium projection as our baseline.

\textsuperscript{28}The data on survival probabilities are available only every five years, and we interpolate between those years. These data are also available in the IPSS home-page.
the sum of direct tax payments by households and social security tax payments divided by wage income. We use data provided by Hayashi and Prescott (2002) to get capital income and wage income as well as capital income tax revenue. We take data on direct taxes on households and the social security tax from the 2000 Annual Report on National Accounts.

**Government debt**

we calculate net government debt for 1979-2004 following Broda and Weinstein (2004). The net government debt is sum of the net debts of the Japanese government, the postal savings system, and government financial institutions. The data are available only from 1979 and their source is the Bank of Japan Flow of Funds website. We calculate net government debt for 1961-1978 using data on the gross government debt and assuming that the ratio of net debt to gross debt is the same as the average value for 1979-2001. The data source for the gross government debt is Financial Bureau, Ministry of Finance.

**Family scale**

The baseline model allows family scale to vary over time in a way that makes family scale consistent with Japanese data on the under 21 year old population which are children under the assumption of our model. This section describes how we calibrate the family scale variables ($\eta_{j,t}$).

A secular decline in the net fertility rate, $n_{1,t}$, implies a corresponding decline in the number of children per household and thus in the family scale, $\eta_{j,t}$, for ages when children are present in the home. We do not have data to allow measurement of $\eta_{j,t}$ on a frequent basis. Instead, we adopt simplifying assumptions that allow us to estimate $\eta_{j,t}$ from information on family scale in 2001 and observations on the time series of the number of twenty-one-year-olds in the population, $N_{1,t}$.

Suppose that the number of children born to a household of age $j$ in period $t$ is given by $m_{j,t} = f_{t}m_{j}$, where $m_{j}$ is a time-invariant indicator of the relative number of births occurring in each year of the parent’s life cycle and $f_{t}$ is a time-varying shock to aggregate fertility. In our model each household contains one adult, so that the empirical analogue of $m_{j,t}$ is births per adult of age $j$ in period $t$. Assume that no births occur before the parent reaches real-time age 21 (model age 1). Assume further that the mortality rate is zero before real-time age 21. Finally, assume that children remain in the household until they reach real-time age 21, at which time they form their own households.

Given the above assumptions, the number of individuals of real-time age 21 (or model age 1) in period $t$ is

$$N_{1,t} = f_{t-20} \sum_{i=1}^{J} m_{i}N_{i,t-20},$$

(27)

where the right-hand side is simply the total number of births twenty periods ago. We have time-series data on $N_{j,t}$, the population of age $j$ at each date.

41
Let $M_{j,t}$ denote the total number of children in a household of age $j$ in period $t$. The number of children in a household of model age 1 is thus $M_{1,t} = m_{1,t} = f_t m_1$ and the number of children in a household of model age 2 is $M_{2,t} = m_{1,t-1} + m_{2,t} = f_{t-1} m_1 + f_t m_2$. More generally, the number of children in a household of age $j$ is

$$M_{j,t} = \sum_{i=1}^{j} f_{t-(j-i)} m_i$$

for $j \leq 20$ and

$$M_{j,t} = \sum_{i=j-19}^{j} f_{t-(j-i)} m_i$$

for $j > 20$. Note that because $f_t$ and $m_j$ enter multiplicatively in all relevant expressions, some normalization assumption is needed to pin down one value of either $f_t$ or $m_j$. The specific normalization is unimportant for the results, and we assume $f_{2001} = 1$.

Given values of $f_t$ and $m_j$, we can calculate $M_{j,t}$ for all $j$ and $t$. We have data for 2001 that allow us to estimate the number of children per adult for age intervals of parents that generally span five years. From these, we construct by interpolation an empirical measure of $M_{j,2001}$ for each age $j$. We try to choose values for $f_t$ and $m_j$ so that, given our simplifying assumptions, the model values of $M_{j,2001}$ and $N_{1,t}$ closely match their empirical analogues. Because we have data on age-specific mortality rates over time, matching $N_{1,t}$ implies that we match the entire time series of population by age, $N_{j,t}$. Note from equation (27) that there exists one observation on $f_t$ for each time-series observation of the population, $N_{j,t}$.

Suppose that $m_j = 0$ for $j > \hat{j}$. Our assumption that each child remains at home for exactly 20 years implies that there are $\hat{j} + 19$ nonzero model values of $M_{j,2001}$ corresponding to the $\hat{j}$ nonzero values of $m_j$, i.e., the system is over-determined. Therefore, we are unable to match all the values of $M_{j,2001}$ and $N_{1,t}$ exactly. Note from equation (27) that, given values for $m_j$, we can pick a sequence of $f_t$ so that the ratio of our model $N_{1,t}$ to the empirical value is constant across $t$, thus exactly reproducing the observed values of $n_{1,t}$, the growth rate of the youngest cohort.

We could, of course, choose values of $f_t$ so that this ratio is unity and we match $N_{1,t}$ exactly but do not match $M_{j,2001}$. Achieving a closer fit to $M_{j,2001}$ generally requires a less exact match to the level of the population series. We consider two calibrations. In one we closely match the $N_{1,t}$. In the other we closely match the $M_{j,2001}$. Presumably, any other calibration would lie between these two extremes.

We do not employ any analytically derived metric to judge the closeness of the match to $M_{j,2001}$, but instead make judgments based on the visual appearance of the measured object and its model counterpart. In our baseline simulations, we employ values of $f_t$ and $m_j$ that result in a model population series that is three percent higher than the observed data. As a robustness check, we use alternate values that match $M_{j,2001}$ about as closely as seems possible, resulting in a model
population series that is 17 percent lower than the data. Both sets of assumptions result in matrices $M_{j,t}$ that are hump-shaped in the $j$ dimension, reaching a peak at about model age 23 in each year. The baseline $M_{j,t}$ declines from this peak somewhat more slowly than the alternative. The most striking feature, however, is that the peak value of $M_{j,t}$ over the life cycle varies substantially over time. The peak value of children per adult in 1960 is 1.35 for the baseline calibration and 1.27 for the alternative. By 2000, the peak has fallen to 0.54 for the baseline calibration and 0.55 for the alternative.

Children receive a weight of one-half in calculating family scale, so that the family scale of a household of age $j$ in period $t$ is $1 + M_{j,t}/2$. We have simulated our baseline model using the alternative calibration for family scale and find no qualitative differences and only very slight quantitative differences compared to the baseline model. For instance, between 1961 and 2001 the maximum difference in the saving rate occurs in 1962 and is 0.37 percent.

A2. Simulation methodology

We use first-order conditions of the household problem (11)-(15) to compute an equilibrium. Given factor prices and the condition that the initial and final asset holding is zero, the household problem is a fixed point problem to solve for an initial consumption to satisfy the first order conditions and the budget constraint from age 1 to $J$. We can get factor prices if we know $\tilde{k}/h$ where $h = H/N$ is the labor input divided by total population. The superscript $\tilde{}$ indicates a variable measured in per-capita efficiency units.

Stationary equilibrium

1. Derive the stationary distribution of the population in the steady state.

2. Let $(k/h)^o$ and $\xi^o$ be the guesses of $\tilde{k}/h$ and $\tilde{\xi}$ in the steady state. Compute factor prices $\{r, \tilde{w}\}$ and the output $\tilde{y}$ using $(k/h)^o$.

3. Let $c^o$ be the guess of $\tilde{c}_1$. Calculate $\{\tilde{c}_j, \tilde{a}_j, l_j\}$ forward using the first order conditions and the budget constraint. Reset $c^o$ so that $\tilde{\alpha}_J = 0$. Then recalculate $\{\tilde{c}_j, \tilde{a}_j, l_j\}$ by setting $\tilde{c}_1 = c^0$. Set $(k/h)^o = (k/h)^n$ if $|(k/h)^o - (k/h)^n| < tol$ where $(k/h)^n$ is the new value given $(k/h)^o$ and tol is the convergence tolerance. Otherwise repeat this process until $|(k/h)^o - (k/h)^n| < tol$.

4. Given the $(k/h)^o$ computed in stage 3, re-do a simulation as stage 3 to get $\xi^o$ such that $|\xi^o - \xi^n| < tol$, and calculate new $(k/h)^n$ in this loop.

5. If $|(k/h)^o - (k/h)^n| < tol$, stop. Otherwise set $\xi^o = \xi^n$ and go back to the stage 3.

In this simulation, the factor markets clear, the household first-order conditions including the budget constraint hold, and the government budget constraint holds. Then the goods market clears automatically. We calculate excess demand in the goods market as a consistency check.


Transitional Dynamics

1. Calculate the final steady state.

2. Let \( \{(k/h)_{ot}\} \) and \( \{\xi_{ot}\} \) be the guesses of \( \{\tilde{k}_t/h_t\} \) and \( \{\tilde{\xi}_t\} \) in a transition. The guess of the final period must be same as the corresponding variables of the final steady state. Compute factor prices \( \{r_t, \tilde{w}_t\} \) and the output \( \{\tilde{y}_t\} \) using \( \{(k/h)_{ot}\} \).

3. For households of age \( j = 1 \) and for \( t = 1, 2, ..., T \) compute the series of consumption, asset and leisure \( \{\tilde{c}_{j,t}, \tilde{a}_{j,t}, l_{j,t}\} \) forward. For households of age \( j > 1 \) at time 1 compute the series \( \{\tilde{c}_{j,t}, \tilde{a}_{j,t}, l_{j,t}\} \) forward given the initial distribution of asset.

4. Compute the new series \( \{(k/h)_t^n, \tilde{\xi}_t^n\} \). If the series converge we get an equilibrium. Otherwise, set new \( \{(k/h)_t^n, \tilde{\xi}_t^n\} \) as the convex combination of the old \( \{(k/h)_t^o, \tilde{\xi}_t^o\} \) and \( \{(k/h)_t^n, \tilde{\xi}_t^n\} \) and go back to stage 2. **30**

---

**30**If it takes too many iterations we may switch the iteration method to the Broyden method after \( n \) iterations. For example \( n \) is set to 100. See Judd (1998) for details on the Broyden method.
References


### Table 1

Model calibration and data sources for exogenous variables

<table>
<thead>
<tr>
<th>Preferences</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective discount factor</td>
<td>$\beta$</td>
<td>0.977</td>
</tr>
<tr>
<td>Share of leisure</td>
<td>$\phi$</td>
<td>0.361</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital share</td>
<td>$\alpha$</td>
<td>0.363</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>$\delta_t$</td>
<td>Hayashi and Prescott(2002)</td>
</tr>
<tr>
<td>Labor efficiency profile</td>
<td>$\epsilon_j$</td>
<td>Braun, et al.(2005)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tax, expenditure and annuity</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital income tax rate</td>
<td>$\tau_t^a$</td>
<td>Hayashi and Prescott(2002)</td>
</tr>
<tr>
<td>Wage income tax rate</td>
<td>$\tau_t^w$</td>
<td>Hayashi and Prescott(2002)</td>
</tr>
<tr>
<td>Social security replacement rate</td>
<td>$\lambda_t$</td>
<td>Oshio and Yashiro(1997)</td>
</tr>
<tr>
<td>Government purchases</td>
<td>$G_t / Y_t$</td>
<td>Hayashi and Prescott(2002)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demographics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population growth rate</td>
<td>$n_t$</td>
<td>IPSS</td>
</tr>
<tr>
<td>Survival probabilities</td>
<td>$\psi_{j,t}$</td>
<td>IPSS</td>
</tr>
<tr>
<td>Family scale</td>
<td>$\eta_{j,t}$</td>
<td>See data appendix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial conditions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial capital stock</td>
<td>$a_{j,0}$</td>
<td>Hayashi, Ando and Ferris(1988)</td>
</tr>
<tr>
<td>Initial asset holding by age</td>
<td>$a_{j,0}$</td>
<td>Hayashi, Ando and Ferris(1988)</td>
</tr>
</tbody>
</table>
**Table 2**

Analysis of the implications of demographics for other macroeconomic variables

<table>
<thead>
<tr>
<th>No changes in fertility and survival probabilities after 1990</th>
<th>Horizons</th>
<th>1990</th>
<th>2000</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
<th>2060</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fertility rate 1% in all periods, survival probabilities unchanged after 1990, and baseline TFP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital stock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*All variables are reported as percentage deviations from the baseline forecast in the same year. A positive value indicates that the variable is above its baseline value in that year.*
Figure 1
Demographics: Model and IPSS Data

Age cohort 21-30

Age cohort 31-40

Age cohort 41-50

Age cohort 51-60

Age cohort 61-70

Age cohort 71-100
Figure 2
In-sample Performance of the Model
1961-2000

Figure 2(a) Net National Saving Rate

Figure 2(b) After-tax Real Interest Rate

Figure 2(c) Average Hours per Worker

Figure 2(d) Growth rate of per capita Output
Figure 3
Model Projections

Figure 3(a) Net National Saving Rate

Figure 3(b) After-tax Real Interest Rate
Figure 4
Decomposition of Changes Japan National Saving rate into three components

Figure 4(a) Historical Decomposition of Changes in National Saving Rate

Figure 4(b) Decomposition of Projected Future Changes in National Saving Rate
Figure 5
Projections: Baseline and Alternative Scenarios

Figure 5(a) Net National Saving Rate

Figure 5(b) After-tax Real Interest Rate